

Tangible Actions

Dustin Freeman and Ravin Balakrishnan
Dept. of Computer Science

University of Toronto, CANADA
{dustin|ravin}@dgp.toronto.edu

ABSTRACT
We present Tangible Actions, an ad-hoc, just-in-time, visu-
al programming by example language designed for large
multitouch interfaces. With the design of Tangible Actions,
we contribute a continually-created system of programming
tokens that occupy the same space as the objects they act
on. Tangible Actions are created by the gestural actions of
the user, and they allow the user to reuse and modify their
own gestures with a lower interaction cost than the original
gesture. We implemented Tangible Actions in three differ-
ent tabletop applications, and ran an informal evaluation.
While we found that study participants generally liked and
understood Tangible Actions, having the objects and the
actions co-located can lead to visual and interaction clutter.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Multitouch, Gestures, End-User Programming,
Programming by Example, Visual Programming, Scripting

INTRODUCTION
The progression from command-line interfaces (CLIs) to
graphical user interfaces (GUIs), to even newer patterns
such as so-called Natural User Interfaces (NUI) [28] repre-
sents a motion from linguistic to manipulative input as the
primary activity of the user. We view Tangible Actions as
an extension of direct manipulation that re-examines the
status-quo object-action relationship seen in modern GUIs.
Traditionally, to apply an action to an object in a GUI, we
would "select" that object, or group of objects, and trigger
the action elsewhere, such as a toolbar. Instead, Tangible
Actions occupy the same space as the objects they act on,
and since they are created by user gestures and support
basic scripting features, they represent a simple visual pro-
gramming-by-example language. This has several useful
implications for large, multi-user interfaces.
How Tangible Actions work: "Move" Example.
See Figure 1 for an example of a Move Tangible Action.
The user performs an "abstracted" move gesture by touch-
ing the background of the interface with a single finger
(Figure 1-1) and moving a short distance left to right
(Figure 1-2). "Abstracted" because it is not performed on
an object, but because it is performed on an imaginary ob-
ject in empty space. This creates an iconic representation of
the: a "Move" Tangible Action, which behaves in a variety
of interesting ways. If an object is passed over the point
where the user's move gesture started, which we call the
activation point, it jumps to the end point, and a transition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ITS 2011, November 13-16, Kobe, Japan.
Copyright 2011 ACM 978-1-4503-0871-7/11/11....$10.00.

Figure 1. The process of creating (1,2) and using (3,4) a Tangible Action. The user performs a "move" gesture by dragging
an imaginary object from left to right across the background (1,2). The "Move" Tangible Action appears when they lift their
finger off the interface (before 3). The user can drag objects to the activation point of the Tangible Action (3), and release
them to apply the action to the object (4). The user no longer needs to perform the "move" gesture for each object.

87

animation appears showing the performance of a Move
action (Figure 1-4). The Move gesture is reduced to the
action of moving an object from the beginning point to the
end point, without any details of how the user themselves
moved, similar to Interactive Beautification [18]. The
Move gesture can be continually "replayed" by placing
objects at the activation point. Only literal playback of a
gesture would be very limiting, so Tangible Actions can
also modified. The user can modify both the activation
point and the end point by dragging them around like any
other interface object. If the activation point is dragged
over an object, the Tangible Action is automatically applied
to that object.
Extending Direct Manipulation
In direct manipulation, users do not have to determine the
linguistic command for a desired action, but may simply
attempt to perform it and evaluate the result. In multitouch
interfaces, the breadth of interactions available by direct
manipulation is much larger. With manipulation-based in-
teraction, rather than language-based interaction as in a
CLI, novice users can start quicker and expert users can
perform simple tasks more easily. It is not surprising then,
that as interfaces are designed to appeal to more and more
users, they increasingly favour manipulation. However, by
using this style of interaction, we have lost many of the
valuable properties of CLIs.
Without linguistic input, the user is always stuck at the
novice level of expressivity, and is unable to perform their
tasks more quickly, with abstraction or automation. There
is no flexibility as seen in CLIs, which allow a smooth
transition to reuse and modification of previous commands,
and even scripting. Perhaps one reason why CLIs are so
flexible is that it is obvious to the user that every action
they make clearly maps to a system command. In a GUI, it
is not clear that every user action is a command, and thus
there has been no way to fluidly create ad-hoc scripts in the
same mode as performing manipulative actions. To novice
users, it may not even be clear that automation is possible.
We hope that referring to previous actions can be like a
conversation, where people can agree on a temporary alias
for an idea and can then refer to it in short-hand. In conver-
sation, we often casually refer to earlier linguistic state-
ments or physical gestures [11]. While we have the oppor-
tunity to refer to previous linguistic input in a CLI, the
same ability does not exist for manipulative input as it does
with conversational gestures in the real world.
We want the desirable properties of direct manipulation in
GUIs, without losing the desirable properties of linguistic
input in CLIs.
TANGIBLE ACTIONS CONCEPT
We define Tangible Actions as continually-created, inter-
active in-situ, visual representations of the user’s interface
actions that can be modified and reused at a lower interac-
tion cost than re-performing the original interactions.

Continually Created
A Tangible Action is created every time the user performs a
meaningful action on the interface. Unlike some previous
PBE systems, Tangible Actions does not make an attempt
to infer user intent. For the purposes of this work, we aim
to demonstrate the usefulness of the principle of applica-
tion-agnostic Tangible Actions. If an application is more
constrained, then it may be easier to infer intent and present
more useful Tangible Actions.
In-Situ
After a user performs an action, a Tangible Action is creat-
ed and displayed in-situ. This is so the user is made aware
of what action they have just performed, and can reuse it
without having to switch contexts. A user interface action
only makes sense as a Tangible Action if it can be per-
formed and represented in-situ. Thus, actions like “Restart”
or “Change screen brightness to 75%” are not suitable.
Visual Representations
We represent Tangible Actions visually instead of textual-
ly, as they occupy the same space as the visual objects they
act on. We provide affordances to show the "activation
point", connecting points for other Tangible Actions, and
areas that gestures can be applied to to modify the parame-
ters of the Tangible Actions.
Modification and Reuse
The primary purpose of implementing Tangible Actions is
so that actions can be reused. It is limiting to allow only
literal replay of an action, so Tangible Actions are modifia-
ble and re-usable in different context that the one in which
they were created. While prototyping Tangible Actions, we
found that the most useful Tangible Actions act on objects.
Since the usefulness of a Tangible Action is to be applied
to multiple objects, the semantics of the object should be
easy to generalize; the parameters of the type of action
should not have to be customized for each object. An ex-
ample of a good candidate for a Tangible Action is a move
action, or a resize action. A bad candidate is a rename ac-
tion, as surely the user doesn’t want to rename several files
the same name. Any action that would be applied to a
group of objects could be turned into a Tangible Action.
Most actions available by direct manipulation fall into this
category, although some, e.g. crop, may be too specific.
Low Interaction Cost
The value of a Tangible Action is that it may be reused
with multiple objects, without the interaction cost of re-
invoking the action each time. We suggest there may be a
tension between the feel of “expressiveness” of an interface
and the efficiency of an interface; an interaction that feels
expressive is inherently inefficient. Thus, newer interfaces
that emphasize manipulative interaction may feel more
expressive but are less efficient. As we noted before,
Hutchins, Hollan and Norman said that the feel of direct-
ness is enhanced when the user specifies an action on an
object of interest by mimicking it themselves [17]. Howev-
er, the mimicking actions we perform in manipulative inter-
faces require high energy. The current alternative seems to

88

be the relatively indirect strategy of selecting the object and
invoking the action elsewhere, such as in a menu. Tangible
Actions can solve this as the user manipulates the Tangible
Action minimally to apply the action to the object, yet still
has the feeling of directness as their action occurs in-situ,
and the action itself is visually represented.
RELATED WORK
Tangible Actions represents an extension of the ideas be-
hind direct manipulation. We summarize previous work on
direct manipulation and then discuss work on creating pro-
grams by example, in-situ interaction, visual programming,
reuse of user actions and decreasing interaction cost.
Work on Direct Manipulation
Shneiderman introduced the concept of Direct Manipula-
tion as "beyond" programming languages [32]. Beaudouin-
Lafon describes an interaction model that aims to general-
ize the principles of direct manipulation [2]. He states that
interaction between the user and domain objects is mediat-
ed by interaction instruments, analogous to tools and in-
struments in the real world acting on physical objects.
Bødker and Andersen present an even more thorough anal-
ysis of the semiotics of the use of interaction instruments in
Complex Mediation [8]; there is a similarity between Tan-
gible Actions and interaction instruments.
Creation of Programs by Example
There have been many Programming by Example (PBE)
systems, some using the term Programming by Demonstra-
tion. The simplest is a macro recorder. This work is similar
to macros with their notion of record and replay, except
that instead of invoking the macro by a menu selection or
shortcut, the macros are invoked immediately on objects
when an object hits a Tangible Action’s activation point.
Myers called Demonstrational Interfaces systems where
the user creates automation of a task by performing it [27].
The hope is that a PBE system to be able to create a pro-
gram based on observing the user’s interaction and using
inference to determine intent. This ability is conspicuously
absent from any widely-used interface over 20 years later,
so we assume inference is difficult and do not attempt it in
our system. Myers says that a system is only a Program-
ming By Example system if it is a Demonstrational Inter-
face and it is also programmable: “I use the term program-
mable for systems that can handle variables, conditionals,
and iteration” [25]. We note here that, by this definition,
Tangible Actions is not, at the moment, programmable.
During the course of a task as a user transitions from per-
forming simple actions, to re-using some previous actions,
they are effectively starting to “program”. There has been a
large amount of work on explicit PBE, where the user must
anticipate the need for automation or a program in advance.
The user must explicitly begin “recording” their actions, or
enter a separate programming mode. Potter identified a set
of obstacles a user encounters to actually using explicit
PBE, which he collectively termed as the Just-In-Time pro-
gramming problem [29]. He suggests that this is why ex-
plicit PBE is not widespread.

Ruvini [31] suggested implicit PBE, where the system con-
tinually listens to the user’s actions, and offers suggestions
of automation. Ruvini identifies the two main issues with
implicit PBE as learning what to automate and learning
when to make a suggestion. However, a PBE system should
not be only implicit: if the user perceives a task needs au-
tomation, they should not have to repeat it twice before the
system offers to automate it. Ideally, users only do anything
once! From surveying previous work, we identify two ma-
jor obstacles to PBE: reducing distraction caused by useless
suggestions of repetitive actions and allowing explicit and
implicit PBE.
Watch What I Do: Programming by Demonstration [12]
and its follow-up, Your Wish Is My Command: Program-
ming by Example [23] provide good coverage of the space
of PBE. However, none of the systems describe using ma-
nipulations as programming tokens, or represent the pro-
grammable actions in-situ with the objects themselves.
In-situ Interaction
A novel feature of Tangible Actions is that it represents
interaction history in-situ, with the intention of affording
further interaction and modification of the interaction histo-
ry. Su et al. display an overlay of an interaction history in a
drawing program when history is invoked [35]. As indi-
vidual actions in the overlay may be selected and undone, it
is similar to Tangible Actions. The goal of the system was
to aid users in building complex illustrations by providing a
selective undo mechanism in context, rather than a discon-
nected list view. Discussing interaction history with respect
to individual interaction tokens brings to mind Edwards et.
al.'s discussion of managing undo and redo for separate
objects as a complex time graph [13].
It could be said that using Tangible Actions represents an
end-user customization of the interface. This is especially
true of the Tangible Actions that are dragged off the top
toolbar (Figure 2); this is notable as the customization is
not a one-off activity, but happens continually. There may
be multiple instances of "toolbars" that move around for the
users' convenience, independent of the UI designer's initial
ideas. This idea has appeared before in Stuerzlinger et al.'s
UI Facades [34].
Visual Programming
Tangible Actions uses of affordances to indicate program-
ming tokens can be snapped together. This was previously
used in the Scratch visual programming language [24].
There are some examples of programming by example sys-
tems where the resultant program is expressed visually in
some way. However, none of the programming representa-
tions are in-situ. Kurlander and Feiner present a Macro By
Example system that represents actions in a comic strip
format [22]. Sikuli Script [9] represents an example of
scripting using visual tokens taken from interface screen-
shots. The result is a script that is primarily textual, with
visual tokens.

89

Modification and Reuse of User Actions
Our inspiration for the advanced features of Tangible Ac-
tions comes from very early work in CLIs.
Joy's C shell (1979) was the first system to give sophisti-
cated access to command history [19]. In the C shell, one
can access the list of previous commands, as well as re-edit
their parameters for command reuse, at a lower interaction
cost than re-typing the command. Joy cites Interlisp's
REDO command as inspiration [36].
Tangible Actions are able to snap together and thus transfer
their output to the next's input. This was inspired by the
Unix pipe ("|"), which, according to Ritchie, appeared in
Unix in 1972 after being suggested by M. D. McIlroy [30].
Decreasing Interaction Cost
There has been a large amount of work with the motivation
of making interaction more efficient, but it has focused on
individual actions, rather than programming by example.
In the large display literature, there has been a lot of work
on accessing objects that are far away. Khan et al. provide a
technique to access portions of the display that are far away
with Frisbee [19]. This is similar to our Move Tangible
Action, except that the Frisbee effectively acts as a two-
way portal. Cao et al.'s work on handheld projectors
demonstrates another "portal", where objects can be passed
between users [10]. Baudisch et al.’s Drag-and-Pop [5]
brings relevant targets closer automatically when the user
selects and holds an object, whereas Bezerianos et. al.'s The
Vacuum [7] has an explicit interaction technique for bring-
ing objects closer from a specific area.
With Tangible Actions, the user can pause in the middle of
a complex multi-step direct manipulation procedure. This
idea was explored in Kobayashi and Igarashi’s Boomerang
[21], where drag-and-drop interactions may be suspended
with a throw and catch metaphor, so that the user can per-
form other necessary actions “in the middle” of the ma-
nipulation. Thrown objects are temporarily presented as
spinning objects, as if they are mid-air, and may be ac-
cessed again when the user is ready.
IMPLEMENTATION AND FEATURES
We implemented three prototypes showcasing Tangible
Actions on a Microsoft Surface: a photo-browsing applica-
tion, an email application and a furniture layout application
(Figure 2). They use a common multitouch gesture set.
Actions and Gestures
The workspace of the interface contains objects (either pho-
tos, emails or furniture). Users can perform conventional
multitouch gestures, such as translation, rotation and scal-
ing. In all applications, a toolbar exists at the top to colour
or star objects. In the furniture application, there is another
toolbar on the left side of the interface that user can instan-
tiate furniture objects from (left side of Figure 2). A Tangi-
ble Action can be created for any action that can be done to
an object.

Flexibility of Tangible Action Creation
There are 3 possible ways to create a Tangible Action:

1. Perform a gesture on an object, and activate the
Tangible Action from history.

2. Perform an "abstracted" gesture on the back-
ground of the interface.

3. Pull a Tangible Action from the toolbar at the top.
In (1), the system initially creates, but hides and disables
the Action. In an early prototype, every gesture the user
made on an object created a "previewing" Tangible Action,
which would fade if not tapped after a few seconds. Even
with fading, this caused a massive amount of distraction
and interface clutter. Hidden Tangible Actions can be re-
trieved by as described in the History View section.
In (2), the user is explicitly calling the Tangible Action into
existence, as opposed to (1). Thus, we make the Tangible
Action "active" right away. We refer to the gesture that the
user performs as "abstracted" because they are performing
it on an imaginary object, in preparation for future use.
In (3), we have a toolbar because there are some actions
that have no obvious gesture mapping. These actions still
have value for reuse, so they should be made available as
Tangible Actions. The toolbar in our system has a few
"colour" actions, as well as a "star" action. The toolbar is
visible at the top of Figure 2.
Tangible Action Anatomy
See Figure 5 for a close-up of two Tangible Actions
snapped together. Our visual design of Tangible Actions
takes inspiration from Scratch, another visual programming
language [24]. Main features are the buttons on the left
side, the top and bottom notches, and the name and optional
parameter of the action on the right side.
The leftmost button is to close or hide the Tangible Action.
The action will still be retrievable from the History View.

Figure 2. The furniture application. The user places furniture
(from left toolbar) on the floor plan (centre). Tangible Actions
for colouring and starring can be dragged off the toolbar at
the top.

90

Figure 3. A script of Tangible Actions snapped together:
Move, Colour Red, Scale and Move. The resultant object
is shown as a preview.

Figure 4. The user places a flat hand down to invoke
History View. Here, the user is placing his right hand
down. The last few actions performed are shown and
may be re-activated.

Figure 5. A Scale Tangible Action and a Move Tangible Ac-
tion snapped together. Visual features of each are described
in the Tangible Action Anatomy section.

Figure 6. Ad-hoc pile spreading as a Tangible Action ap-
proaches a cluster of objects. Objects may be densely
packed on the interface (1). When a held Tangible Action
approaches them, they spread out so that the Tangible
Action can act on them individually (2).

Figure 7. (1,2) Shows a user trying to drag a "Red" Tangible Action off the toolbar to colour the two icons near the bottom
of the screen. Since Tangible Actions are "always on", they unintentionally colour several distractor icons. Instead, the user
can put a Tangible Action into Inactive Drag Mode by double-tapping, which greys-out the Tangible Action, as shown in
(3). The user can safely drag the Tangible Action over the distractor icons (3,4). The user briefly lifts their finger off to re-
turn the Tangible Action to the default mode (5).

91

The second leftmost button is the undo button. Each Tangi-
ble Action has a stack of action performances, where it has
acted on an object. Tapping on the undo button undoes ac-
tions from this stack, regardless of what other Tangible
Actions have done on the interface. This is a simplified
version of Edward et. al.'s multi-level undo [13].
The notches are directly inspired by Scratch's design lan-
guage [24]. The inward notch at the top indicates that the
Tangible Action can accept input, and is the location of the
Tangible Action's "activation point." Initially this is empty,
and so the Tangible Action will apply to objects that this
notch intersects with on the interface. If another Tangible
Action is snapped to this notch (creating a 2-Tangible Ac-
tion script), it takes input from the previous Tangible Ac-
tion. When the inward notch is empty, as it is for the Scale
action in Figure 5, a light blue circle is shown to indicate
the action is accepting input. An outward notch at the top
exists for all Tangible Actions except the Move action,
which moves objects elsewhere, and the Trash action,
which is a penultimate action.
The name of the type of the Tangible Action appears to the
right of the middle. To the right of that, if meaningful, there
will be the parameter of the Tangible Action, such as the
scale factor, rotate angle, or colour to be applied.
Since the Scale Tangible Action accepts two-finger input to
change its scale factor (currently 1.8 in Figure 5), it needs a
large contact area for the user to gesture on. This appears as
the large, light circle in Figure 5. We refer to this as the
"gesturable area". See the Tangible Action Modification
section for more details.
Flexibility of Tangible Action Invocation
We wanted to allow flexibility of use, so that a Tangible
Action can be applied to objects in bulk, but also to indi-
vidual objects with more hesitance and consideration. Fun-
damentally, a Tangible Action acts on an object whenever
the object is within a small radius of the Tangible Action’s
activation point. This generates two emergent use cases:
Tossing objects to the Tangible Action to apply the Tangi-
ble Action to individual objects.
Dragging the Tangible Action over a set of objects for bulk
application. The Tangible Action will automatically be
applied to every object that is hit.
Tangible Action Modification
The user primarily modifies Tangible Actions by dragging
to move their activation point, but this only modifies which
objects the Tangible Action may act on. Parameters of the
Tangible Actions can also be modified. For example, the
user can modify the end point of the Move action by drag-
ging it. The user can modify the scale factor and the rota-
tion angle of the Scale and Rotate actions, respectively, by
placing two fingers on the Tangible action, and manipulat-
ing as if the Tangible Action was an object itself. As it is
awkward to place and move two fingers on the small area
of a Tangible Action, we attach a large "gesturable area" to
Tangible Actions that accept two-finger input (Figure 5).

Previewing
Previewing allows users to test the results of an action on
an object before committing to it. We show the preview of
the action of a Tangible Action on an object whenever the
user holds the object over the activation point of a Tangible
Action. The appearance of the held object changes to a
“wireframe” appearance, and the exact result is showed at
the end point (see Figure 3). The user may commit to the
preview by releasing their hold over the object. The user
can cancel the preview by moving the object away before
releasing their hold.
Multiple Tangible Actions and Scripting
We allow multiple Tangible Actions to be combined to-
gether into scripts by snapping. When combined into a
Tangible Action script, the script will act on objects as if a
single Tangible Action. Multiple Tangible Actions that are
snapped together operate similar to the Unix pipe [30],
where the result of one action feeds into the next. A simple
example is shown in Figure 5, with a more complex exam-
ple in Figure 3.
If a user performs a more complex gestural action, it may
be parsed into multiple atomic actions by the system. For
example, one sequence of movement by two fingers could
be parsed to into a set of Tangible Actions containing a
Move, Rotate and Scale.
History View
To view the history of all actions that have been performed
on the interface, the user places a flat hand down on the
interface (Figure 4). The last few actions performed are
shown. A horizontal slider appears on the bottom of the
screen and the user may slide this left and right to view the
entire history, showing a few actions at a time.
"Actions" in the history are represented as Tangible Ac-
tions in preview mode. To activate a Tangible Action for
use, the user must tap the previewing Tangible Action. We
create a hidden Tangible Action every single time an action
is applied to an object, either directly by gesture or indirect-
ly with a Tangible Action. Thus, if a Scale Tangible Action
is dragged across 5 objects that are spaced out across the
interface, the user will see 5 hidden Tangible Actions in the
history view.
Dealing with Clusters of Objects
Our interface does not have an explicit notion of piles, as
Bumptop [1] does. However, tightly packed piles occur
frequently in our interface, especially when a used has
moved several objects to the same location with a Move
Tangible Action. As Tangible Actions act indiscriminately
on nearby objects, it will always apply to every object in a
pile, which is not necessarily what the user wanted. It is
inconvenient and inefficient to move the objects around to
access only those desired.
Ad-Hoc Pile Spreading
Ad-Hoc Pile Spreading temporarily makes every object in a
pile accessible individually for the user. When a held Tan-
gible Action approaches a tight pile of objects, the pile
spreads out perpendicular to the Tangible Action (see Fig-

92

ure 6). As the user moves the Tangible Action left and
right, the spacing of the objects changes so the object di-
rectly in front of the Tangible Action is easier to access.
When the user withdraws or releases the Tangible Action,
the objects in the pile return to their original position and
size. This is best seen in the video.
We detect "piles" by clustering of all objects on the inter-
face based on a distance threshold. Once clusters are identi-
fied, they are spread if the Tangible Action is sufficiently
close to at least one of their objects.
Inactive Drag Mode
Inactive Drag Mode is designed to help users apply Tangi-
ble Actions to a small subset of objects in a dense field of
distractor objects.
In Inactive Drag Mode, when the activation point of the
Tangible Action is dragged over objects, it does not auto-
matically apply its action. Rather, it shows a preview, iden-
tical to if the object was held over the Tangible Action’s
activation point. The activation point may now be safely
dragged around without unintentionally invoking the ac-
tion.
The user can put a Tangible Action into Inactive Drag
Mode by double-tapping on it. The user may now put a
finger down on the activation point and move it around. To
apply the Tangible Action’s action to individual objects,
the user may simply tap another finger nearby. We find this
is best done with the index and middle finger. Lifting up
the finger on the activation point ends Inactive Drag Mode
(see Figure 7).
INFORMAL EVALUATION
We ran an informal evaluation of our system to:
• Determine if Tangible Actions is easy to comprehend
• See when and how participants used Tangible Actions
• Find issues with our implementation

Tangible Actions in its full effectiveness is obviously an
expert system. In the space of time available during the
evaluation, we would not be able to get users to use all fea-
tures fully, but we could get them to use most of the novice
features of Tangible Actions. This still generated useful and
interesting, if critical, observations.
Participants
We recruited participants that would have an affinity for
expert systems. These were 4 undergraduate computer sci-
ence students, between the ages of 18 and 22. All of them
owned multitouch phones.
Procedure
The experimenter would spend 4 minutes demonstrating all
the features of Tangible Actions. Then, the participants
would play with Tangible Actions for about 8 minutes,
with the experimenter clarifying functionality if necessary.
Then, the participant would perform 4-6 tasks with each of
the three applications (photos, email, furniture). The tasks
were designed so that the participant could take advantage
of repeated actions and scripting, though they were not
constrained to doing so. For each application, the partici-

pant was told they could do the tasks out of order, as long
as they finished all of them. Tasks were instructions that
were well-suited to Tangible Actions, such as "Put 6 chairs
in the kitchen." and "Colour all chairs in the house red."
The two example instructions in the previous sentence were
designed so that participants could possibly create a script
doing both at simultaneously.
Questionnaire Results
At the end of the study, users filled out a questionnaire with
Likert ratings and general comments. Overall, Tangible
Actions was found to be easy to learn (4.5/5). However,
participants were unsure about whether they liked them
(3.125/5) or whether they enabled them to do things better
(3/5). Overall, participants felt that Tangible Actions got in
the way, responding (2.25/5) for "Tangible Actions did not
get in the way". While this is discouraging for this imple-
mentation, we did get a number of useful observations.
Given the obvious complexity of the system, having all
participants agree it was easy to learn is encouraging.
One problem with the Microsoft Surface apparatus is that it
has trouble tracking fast-moving contacts. The uninitiated
user will not anticipate this, so often they would lose cap-
ture of an object while moving it quickly across the inter-
face, and inadvertently create and activate a Move Tangible
Action. This led to lots of frustration, with 3/4 participants
complaining about it. This is likely the main cause of the
low rating for whether Tangible Actions "got in the way".
Observations
The largest issue is that it is hard to convince users that
they can use Tangible Actions in a specific context. Users
do not perceive redundancies in their own actions as they
are performing them. This is a general problem in pro-
gramming by example systems, not unique to our system.
Placing a hand down on the interface to invoke history
view was chosen so that the view could be "triggered any-
where", instead of a button, which is necessarily con-
strained to a single location on the interface. However, we
found that users accidentally triggered it by leaning on the
interface, and in one case, with a loose sleeve. It seems that
a button in a fixed position on the interface may be a better
choice. An alternative is that a specific contact pose could
be used [14].
As many of the tasks required participants to apply an ac-
tion to a subset of all the objects spread across the interface,
Inactive Drag Mode was one of the most popular features.
However, all participants found it was mechanically diffi-
cult to hold on to the Action with one finger and tap with
the other.
Most participants enjoyed ad-hoc pile spreading. While
there is hysteresis in when the pile spreads and returns to its
original position, there is not when the Tangible Action is
moving left to right to browse through the objects. This
would have been useful, since participants had trouble
crossing a Tangible Action over a particular object.

93

In our implementation, dragging an action over an object
applies the action to the object. Dragging an object over an
action only shows a preview of the action applied to the
object. Participant 3 wished to be able to have the action
applied to the object if he dragged the object over the ac-
tion. Perhaps the invocation of the preview feature should
be changed.
Unsurprisingly, clutter was a major problem. Often, partic-
ipants would leave Tangible Actions on the interface when
they were done with them. These would pile up, consuming
more and more screen real estate, until they had to be dealt
with in one batch, either by deleting them or moving them
out of the way. Participant 3 said on his questionnaire:
"Screen real-estate is heavily consumed by Tangible Ac-
tions". Even though we included a "close all Tangible Ac-
tions" button, users would spend a lot of time going around
and closing Tangible Actions individually. While this
seems to imply that automatically culling Tangible Actions
that likely will not be used is a good idea, it is incredibly
difficult to determine which Tangible Actions the user
wants to use in the future. This again brings us back to the
problem of inferring intent.
Conclusions from Evaluation
We argue that Tangible Actions reduces the physical effort
of performing repeated actions. However, determining the
suitable use of Tangible Actions for a given task requires
more cognitive effort than simply performing the task.
Overall, users were very pragmatic and did not use ad-
vanced features of Tangible Actions, such as snapping
them together to create scripts. For example, when they had
to rotate several photos by 90 degrees in the photo task,
only 2 out of the 4 users took advantage of being able to
create a Rotate task. Unfortunately, our evaluation has not
determined if Tangible Actions are useful for experts who
have become acquainted with the system over time.
DISCUSSION
At the outset, the authors sought to improve the efficiency
of multitouch interaction independent of the application.
We took the unique approach of turning every instance of
user manipulation input into a possible component of a
visual programming language, in the same space as the
interaction itself. Perhaps unsurprisingly, this led to a few
problems with visual and interaction clutter. We will dis-
cuss a few of our thoughts on the design of Tangible Ac-
tions, and then present some of the unsolved problems that
remain.
Limitations
Tangible Actions is not a full programming language, ac-
cording to Myers’ definition of a programmable system
[27]. Tangible Actions include variables at the moment of
their operation, but they are not held on for later use. There
is no implementation at all of conditionals or iteration. We
initially left this functionality out because of the visual clut-
ter they would create, and the difficulty of visual design.
However, these features may not be necessary for the “Just-
In-Time” programming tasks we are trying to foster.

Creating a full programming language out of Tangible Ac-
tions is likely not be feasible. As operations share the same
space as the data it acts upon, abstraction can occur only to
a limited degree.
Abstraction of Input
In parsing a user’s interaction, there are various levels of
abstraction that could be used.

• Literal
• Atomic begin-end manipulative actions
• Inferring the task itself.

We abstracted the literal movements of the user to manipu-
lative actions. The usefulness of literal replaying of multi-
touch contact movements is suspect, and not very general-
izable. Attempting to infer the task itself also seems rela-
tively difficult and will not scale well to new applications.
Comparison to Selection
In the modern GUI, there is a pre-existing method to apply
one action to multiple objects: one selects the desired ob-
jects, and then performs the action. This works well for
both manipulative and linguistic interaction. However, this
may causes problems when the user is uncertain or there
are multiple users.
If the user is certain about the action to be applied yet un-
certain about the objects to apply it to, then group selection
has issues. For example, if the user has a large collection of
photos need colour correction for a subset of them. Using
group selection, the group must be decided on before per-
forming the action; selecting the objects to apply the action
to is a strict precursor of actually performing the action.
The user can either examine each object and add them to
the group selection one-by-one, in preparation to apply the
action, or apply the action to each object individually. If the
cost of performing the interaction is high, such as if it is
deep in a hierarchical menu, then either method is time-
consuming, and it does not allow the user to be flexible if
they are uncertain.
With Tangible Actions, the user can apply the action to one
object by invoking it any way they choose, and then drag
that action over other objects. The user can easily undo the
Tangible Action's effect on the object by pressing its undo
button. If the user sees a large clump of objects which defi-
nitely need the action applied to them, the user can simply
drag the action across the clump quickly, which would be
no slower than applying an action to a group of selected
objects. However, if the user is certain of the group of ob-
jects they want to apply the action to in advance, then
group selection will likely be less time-consuming than
Tangible Actions.
There are few multi-user, multitouch interfaces that can tell
users apart with certainty. The Microsoft Surface [26] and
Smart Table [33] do not, but the MERL DiamondTouch
[25] does. If users cannot be distinguished, then they must
"use" the same set of selected objects. There is no existing
implementation of group selection for multiple users on
interfaces that are not able to tell the users apart.

94

Using Tangible Actions may also preserve the direct ma-
nipulation metaphor better than group selection. Consider
an example of group selection, where the user selects a
group of objects and then applies a scale gesture over only
one of them. The result will be that all of the objects will be
enlarged. It could be argued that this violates the “feel” of
directness more than dragging a Scale Tangible Action over
each object does.
Properties of Tangible Actions for Multiple Users
We briefly explored the value of the Tangible Actions for
multiple users. We came up with four possible reasons for
users to share Tangible Actions: authority, skill, physical
reach and learning.
For authority, one user (the “granter”) may want to grant
another user (the “grantee”) temporary authority to perform
an action they would not be able to do directly. The granter
is effectively giving the grantee a temporary wrapper for
the interface. For example, a private folder owned by the
granter. Any other user may not move objects into that
folder. The granter can create a Move Action into that fold-
er, and adjust the activation point so that it is reachable by
the grantee. The grantee can now move objects into the
private folder using the Move Action, and the granter can
keep track of what ways objects can end up in the folder.
For skill, some novice users may not be physically skilled
enough, or suffer from a physical disability that does not
allow them to perform a complex, expressive multitouch
gestures. Ideally, any interface that is expressive for able-
bodied users is also accessible for disabled users. However,
an able-bodied user creating Tangible Actions for reuse by
a disabled user is a compelling teamwork activity.
For physical reach, some areas may not be reachable on
large display. There is a large amount of previous work on
facilitating reach on large displays reviewed in the Related
Work section, but all the techniques discussed are for single
users. With Tangible Actions, perhaps multiple users could
work collaboratively on one manipulation that spans a larg-
er space than a normal user could reach.
For learning, an expert user could teach a novice user how
to perform a particular action or they could give them a
useful sequence of actions. Experts could share useful,
commonly used sequences of Tangible Actions, similar to
how snippets of code or instructions for using websites are
shared.
Further Applications
In addition to the three applications developed to demon-
strate Tangible Actions in this work, they could be useful in
a wide variety of applications. The discussion of the poten-
tial use of Tangible Actions in multi-user scenarios implies
that Tangible Actions could be user to manage files with
different rights on a shared interface. Tangible Actions
could also be used in a gaming scenario, with one or more
users, where a complex gesture triggers a complex spell,
and the user want may to recall the spell, or give it to an-
other player to use.

CONCLUSION
We have presented the novel concept of Tangible Actions
as an attempt to allow expert users to be more efficient
while using manipulative interfaces. Tangible Actions are
continually-created interactive in-situ representations of
the user’s interface actions that can be modified and reused
at a lower interaction cost than re-performing the original
interactions. The concept of Tangible Actions builds on a
large body of previous work.
We created a prototype of Tangible Actions implemented
in three applications. We found that interaction clutter and
accidental invocation is a major problem in our system.
However, there is enough potential in the idea of Tangible
Actions that we believe this merits further study and devel-
opment.
FUTURE WORK
While Tangible Actions represent a step up from the tedi-
um of direct manipulation, they still represent a long way
from complex automation. It would be valuable to bridge
the gap further between Tangible Actions and more power-
ful scripts. For example, at the moment Tangible Actions
apply to all objects indiscriminately; it would be nice to
have some filtering or triggers. However, the inclusion of
these more complex features may make the ad-hoc use of
Tangible Actions more difficult.
Many of the people we have discussed Tangible Actions
with have mentioned the use of recording, replaying and
modifying actions for interactive art. A good example of art
that uses recorded and repeated motion is Bartneck et al’s
work on Interactive Visual Canons [3]. Another example is
in Habib et al.'s SandCanvas [16], where gestures in virtual
sand are recorded and replayed to decrease artists' work.
ACKNOWLEDGMENTS

We thank various people for being participants in early
prototype testing, especially the members of the Dynamic
Graphics Project at the University of Toronto and Wyatt
Freeman.

REFERENCES
1. Agarawala, A. and Balakrishnan, B. Keepin' it real:

pushing the desktop metaphor with physics, piles and
the pen. ACM CHI 2006, pp. 1283-1292.

2. Beaudouin-Lafon, M. Instrumental Interaction: An In-
teraction Model for Designing Post-WIMP User Inter-
faces. ACM CHI 2000, pp. 446-453.

3. Bartneck, C., & Funk, M. Dancing With Myself: The
Interactive Visual Canon Platform. ACM CHI 2009, pp.
3501-3502.

4. Baudisch, P., Tan, D., Collomb, M., Robbins, D.,
Hinckley, K., Agrawala, M., Zhao, S., and Ramos, G.
Phosphor: Explaining Transitions in the User Interface
Using Afterglow Effects. ACM UIST 2006, pp. 169-
178.

5. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M.,
Tandler, P. Bederson, B., and Zierlinger, A. Drag-and-

95

Pop and Drag-and-Pick: Techniques for Accessing Re-
mote Screen Content on Touch- and Pen-operated Sys-
tems. INTERACT 2003, pp. 57-64.

6. Bezerianos, A., Dragicevic, P., Balakrishnan, R. Mne-
monic rendering: An image-based approach for expos-
ing hidden changes in dynamic displays. ACM UIST
2006, pp. 159-168.

7. Bezerianos, A. and Balakrishnan, R. The Vacuum: Fa-
cilitating the manipulation of distant objects. ACM CHI
2005, pp. 361-370.

8. Bødker, S. and Andersen, P.B. Complex Mediation.
ACM Human-Computer Interaction, 20 (4), 2005, pp.
353-402.

9. Chang, T-H., Yeh, T. and Miller, R. GUI Testing Using
Computer Vision. ACM CHI 2010, pp 1535-1544.

10. Xiang Cao, Clifton Forlines, and Ravin Balakrishnan.
Multi-user interaction using handheld projectors. ACM
UIST 2007. pp, 43-52.

11. Clark, H. (1996). Using Language. Cambridge: Cam-
bridge University Press.

12. Cypher, A. (Ed.). (1993). Watch What I Do: Program-
ming by Demonstration. Cambridge, MA: MIT Press.

13. Edwards, K.W., Igarashi, T., LaMarca, A., and Mynatt,
E.D. 2000. A temporal model for multi-level undo and
redo. ACM UIST 2000. pp 31-40.

14. Freeman, D., Benko, H., Ringel-Morris, M. and
Wigdor, D. ShadowGuides: Visualizations for In-Situ
Learning of Multitouch and Whole-Hand Gestures.
ACM ITS 2009, pp. 165-172.

15. Frohlich, D. (1993) The History and Future of Direct
Manipulation. Behaviour & Information Technology 12,
6 (1992), pp 315-329.

16. Kazi, R.H., Chua, K.C., Zhao, S., Davis, R., and Low,
K. SandCanvas: a multi-touch art medium inspired by
sand animation. ACM CHI 2011. pp. 1283-1292.

17. Hutchins, E., Hollan, J. and Norman, D. (1985). Direct
Manipulation Interfaces. in Norman, D. and Draper,
Stephen W. (Editors), User Centered System Design:
New Perspectives on Human-Computer Interaction,
Lawrence Erlbaum Associates, pp. 87-124.

18. Igarashi, T., Matsuoka, S., Kawachiya, S. and Tanaka,
H. Interactive beautification: a technique for rapid geo-
metric design. ACM SIGGRAPH 2007.

19. Joy, W. An Introduction to the C Shell. In UNIX Pro-
grammer’s Manual, Seventh Edition, Third Berkeley
UNIX Distribution, Dept. of EE & CS, University of
California, Berkeley, 1979.

20. Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N.
and Kurtenback, G. A remote control interface for large
displays. ACM UIST 2004, pp 127-136.

21. Kobayashi, M. and Igarashi, T. Boomerang: suspenda-
ble drag-and-drop interactions based on a throw-and-
catch metaphor. ACM UIST 2007, pp 187-190.

22. Kurlander, D. and Feiner, S. A History-Based Macro
By Example System. ACM UIST 1992, pp 99-106.

23. Lieberman, H. (ed.) (2001). Your Wish is My Com-
mand: Programming by Example. San Francisco: Mor-
gan Kaufmann.

24. Malan, D. and Leitner, H. Scratch for budding computer
scientists. ACM SIGCSE 2007, pp. 223-227.

25. MERL DiamondTouch.
http://www.merl.com/projects/DiamondTouch/

26. Microsoft Surface. http://www.microsoft.com/surface
27. Myers, B. Demonstrational Interfaces: A Step Beyond

Direct Manipulation. IEEE Computer 25, 8 (August
1992), 61-73.

28. Natural User Interface Group. http://nuigroup.com
29. Potter, R. “Just-in-Time Programming”. In A. Cypher,

editor, Watch What I do: Programming by Demonstra-
tion, MIT Press, London, England, 1993.

30. Ritchie, D. 1979. The Evolution of the Unix Time-
Sharing System. In Proceedings of a Symposium on
Language Design and Programming Methodology, Jef-
frey M. Tobias (Ed.). Springer-Verlag, London, UK, pp.
25-36.

31. Ruvini, Jean-David. The Challenges of Implicit Pro-
gramming by Example. ACM IUI 2004.

32. Shneiderman, Ben (1983). Direct Manipulation: A Step
Beyond Programming Languages. Computer, Vol. 16,
No. 8, Aug. 1983, pp. 57-69.

33. SMART Table. http://smarttech.com/table
34. Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel,

N. User interface façades: towards fully adaptable user
interfaces. ACM UIST 2006. pp, 309-318

35. Su, S., Paris, S., Aliaga, F., Scull, C., Johnson, S. and
Durand, F. (2009). Interactive Visual Histories for Vec-
tor Graphics. MIT CSAIL Technical Report June 24,
2009.

36. Teitelman, W. and Masinter, L. The Interlisp program-
ming environment, Computer vol. 14, no. 4, 1981, pp.
25–34

96

